Guía docente de Estadística Aplicada al Medio Ambiente (2061117)
Grado
Rama
Módulo
Materia
Curso
Semestre
Créditos
Tipo
Profesorado
Teórico
Práctico
- Francisco Javier Esquivel Sánchez Grupos: 3 y 4
- Rocío Raya Miranda Grupo: 1
- Úrsula Torres Parejo Grupo: 2
Tutorías
Juan Manuel Praena Fernández
EmailFrancisco Javier Esquivel Sánchez
Email- Lunes de 09:00 a 12:00 (Desp. 25 Dpto. Estadística Facultad de Ciencias)
- Martes de 09:00 a 12:00 (Desp. 25 Dpto. Estadística Facultad de Ciencias)
Rocío Raya Miranda
Email- Lunes de 08:00 a 10:00 (Despacho 27, Departamento de Estadística e I.O)
- Martes de 08:00 a 10:00 (Despacho 27, Departamento de Estadística e I.O)
- Miércoles de 08:00 a 10:00 (Despacho 27, Departamento de Estadística e I.O)
Úrsula Torres Parejo
Email- Miércoles de 12:00 a 14:00
- Jueves de 12:00 a 14:00
Prerrequisitos y/o Recomendaciones
Breve descripción de contenidos (Según memoria de verificación del Máster)
- Estadística Descriptiva. Variables estadísticas unidimensionales y bidimensionales. Dependencia e independencia estadística. Concepto de regresión y correlación.
- Cálculo de Probabilidades. Conceptos básicos: espacio muestral, sucesos, operaciones con sucesos. Definición de la Probabilidad. Propiedades de la Probabilidad.
- Variable Aleatoria. Modelos de Probabilidad Discretos: Distribución binomial y Distribución de Poisson. Modelos de Probabilidad Continuos: Distribución Normal, Distribución Chi-Cuadrado, Distribución t de Student, Distribución F de Snedecor.
- Introducción a la Inferencia Estadística. Muestreo aleatorio simple. Distribución de estadísticos muestrales.
- Objetivos de la estimación estadística. Estimación puntual. Propiedades de los estimadores. Estimación por intervalos de confianza.
- Contrate de hipótesis. Contrastes paramétricos. Contrastes para los parámetros de una distribución Normal. Contrastes para proporciones. Contrastes sobre los parámetros de una distribución Normal.
- Contrastes no paramétricos. Contrastes para la bondad de ajuste. Contrastes de homogeneidad. Contrastes de independencia de dos caracteres.
Competencias
Competencias Generales
- CG01. Comprender el método científico. Capacidad de análisis y síntesis y resolución de problemas.
- CG02. Razonamiento crítico y aprendizaje autónomo.
- CG03. Conocimientos de informática relativos al ámbito de estudio.
- CG04. Capacidad de organización y planificación.
- CG05. Comunicación oral y escrita.
- CG06. Capacidad de gestión de la información.
- CG07. Trabajo en equipo.
Competencias Específicas
- CE01. Uso de herramientas matemáticas para la resolución de problemas relacionados con el medio ambiente.
- CE12. Diseño de muestreos, tratamiento de datos e interpretación de resultados estadísticos y de programas estadísticos y bases de datos.
- CE37. Capacidad de consideración transdisciplinar de un problema ambiental
- CE38. Conocimiento de la complejidad y la incertidumbre de las dimensiones temporales y espaciales de los procesos ambientales
Resultados de aprendizaje (Objetivos)
- Conocimientos y habilidades técnicas para la producción, el análisis y la interpretación de datos.
- Conocimientos y habilidades de las técnicas de muestreo y de trabajo de campo.
- Conocimientos y habilidades de los principales modelos de probabilidad discretos y continuos.
- Capacidad de plantear, resolver e interpretar problemas de intervalos de confianza.
- Capacidad de plantear, resolver e interpretar problemas de contrastes de hipótesis paramétricos y no-paramétricos en una y dos poblaciones.
- Capacidad en el manejo de herramientas informáticas y estadísticas aplicadas al medio ambiente.
- Capacidad de Interpretar correctamente los resultados estadísticos.
- Capacidad de aplicar los principios y herramientas estadísticas al conocimiento del medio ambiente.
- Conocimientos de las técnicas estadísticas pertinentes en cada momento y ponerlas en práctica mediante el uso de software estadístico.
Programa de contenidos Teóricos y Prácticos
Teórico
- Tema 1. Estadística descriptiva unidimensional
- Introducción. Conceptos básicos. Variables estadísticas unidimensionales: Tablas estadísticas y representaciones gráficas.
- Tema 2. Estadística descriptiva bidimensional
- Variables estadísticas bidimensionales. Regresión y correlación.
- Tema 3. Teoría de la probabilidad
- Conceptos básicos. Concepto de Probabilidad. Propiedades. Probabilidad condicionada. Independencia de Sucesos. Teorema de la probabilidad total y Teorema de Bayes.
- Tema 4. Conceptos básicos de variables aleatorias discretas y continuas
- Introducción. Variable aleatoria discreta. Variable aleatoria continua. Características de una variable aleatoria.
- Tema 5. Modelos de probabilidad discretos
- Distribución de Bernoulli. Distribución Binomial. Distribución de Poisson. Aproximación de una distribución binomial por una Poisson.
- Tema 6. Modelos de probabilidad continuos
- Distribución Normal. Distribución Normal tipificada. Aproximación de una Binomial por una distribución Normal.
- Tema 7. Introducción a la inferencia estadística
- Conceptos generales. Distribuciones de probabilidad asociadas al muestreo. Distribución de los estadísticos muestrales.
- Tema 8. Teoría de la estimación
- Estimación puntual. Propiedades de los estimadores. Estimación por intervalos de confianza.
- Tema 9. Contrastes de hipótesis paramétricos
- Conceptos básicos. Definición de contrastes paramétricos. Contrastes de hipótesis para los parámetros de una distribución Normal. Contrastes de hipótesis para proporciones.
- Tema 10. Contrastes de hipótesis no paramétricos
- Definición de contrastes no paramétricos. Algunos contrastes no paramétricos usuales.
Práctico
- Prácticas en pizarra
- Práctica 1. Estadística descriptiva unidimensional.
- Práctica 2. Estadística descriptiva bidimensional. Regresión.
- Práctica 3. Cálculo de probabilidades.
- Práctica 4. Variable aleatoria discreta y continua.
- Práctica 5. Modelos de probabilidad discretos.
- Práctica 6. Modelos de probabilidad continuos.
- Práctica 7. Intervalos de confianza.
- Práctica 8. Contrastes de hipótesis paramétricos.
- Práctica 9. Contrastes de hipótesis no paramétricos.
- Prácticas de ordenador
- Práctica 1. Manejo de datos. Estadística descriptiva unidimensional.
- Práctica 2. Estadística descriptiva bidimensional. Correlación y Regresión.
- Práctica 3. Intervalos de confianza y contrastes de hipótesis paramétricos y no paramétricos.
Bibliografía
Bibliografía fundamental
- Serrano Pérez, J.J. “Estadística básica para Ciencias Ambiéntales y Biología”. Editorial Técnica Avicam, 2022.
- Álvarez, R. “Estadística aplicada a las ciencias de la salud”, Díaz de Santos, Madrid, 2007.
- De la Horra Navarro, Julián. “Estadística aplicada”. Ediciones Díaz de Santos. 2003.
- Lara Porras, A.M. (2002). “Estadística para Ciencias Biológicas y Ciencias Ambientales. Problemas y Exámenes Resueltos”. Ed. Proyecto Sur.
- Martín Andrés, A. y Luna del Castillo, J. de D. (2004). "Bioestadística para las Ciencias de la Salud". Ed. Capitel. Madrid.
- Milton J.S. (2007). “Estadística para Biología y Ciencias de la Salud”. McGraw-Hill. Interamericana de España, S.A.U.
- Ruíz Díaz, F. Barón López, F. J. “Bioestadística”. Editorial Thomson-Paraninfo, 2005.
Bibliografía complementaria
- Crawley, M.J. “Methods in Ecology. GLIM for ecologists”. Editorial: Blackwell Scientific Publications, Oxford. 1993.
- Crawley, M.J. “The R book”. John Wiley & Sons Inc. 2007.
- Gerry P. Quinn and Michael J. Keough. “Experimental Design and Data Analysis for Biologists”. Editorial: Cambridge University Press. 2002.
- Hoshmand, A. R. “Statistical methods for environmental and agricultural sciences”, CRS Press, New York, 1998.
- Samuel M. y Gurevitch, J. “Design and Analysis of Ecological Experiments”. Editores: Scheiner. Editorial: Chapman and Hall. 1993.
- Ramos-Ábalos, E.M. , Raya-Miranda, R. y Romero-Molina, D. “Estadística”. Copicentro Editorial. 2010.
- Ramos-Ábalos, E.M. , Raya-Miranda, R. y Romero-Molina, D. “Problemas de Estadística”. Copicentro Editorial. 2010
- Selvin, S. “Practical Biostatistics Methods”. Editorial: Duxbury Press. 1995.
Enlaces recomendados
Metodología docente
- MD01. Lección magistral/expositiva
- MD02. Sesiones de discusión y debate
- MD04. Prácticas de laboratorio
- MD06. Prácticas en sala de informática
- MD11. Realización de trabajos individuales
Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)
Evaluación Ordinaria
La normativa de la Universidad de Granada en materia de evaluación y calificación puede consultarse en el texto consolidado de la Normativa de evaluación y de calificación de los estudiantes de la Universidad de Granada.
La evaluación del alumnado se llevará a cabo mediante los siguientes instrumentos:
- Pruebas de evaluación sobre los contenidos teórico-prácticos (TC) del programa en la que los estudiantes tendrán que demostrar las competencias adquiridas. Se realizarán tres pruebas de evaluación por bloque: Bloque 1-Descriptiva. Regresión (Temas 1-2), Bloque 2-Probabilidad y Modelos de probabilidad (Temas 3-4-5-6) y Bloque 3-Inferencia (Temas 7-8-9-10). Dichas pruebas se realizarán en horario docente de la asignatura mediante un cuestionario de 10 a 20 preguntas tipo test (con tres opciones de respuesta; por cada tres preguntas mal se restará una bien; las preguntas no respondidas no contrarrestarán; la ponderación de esta parte será 20%) y entre 2 y 4 ejercicios cortos a desarrollar (lla ponderación de esta parte será 50%). La duración máxima total será de 55 minutos. Ponderación total de las tres pruebas en la calificación final: 70%.
-
Resolución individual de problemas y supuestos prácticos por bloques de temas prácticos (P). Se realizarán entre 3 y 5 pruebas. Ponderación en la calificación final: 20%.
-
Cuestionarios relativos a las prácticas en ordenador al finalizar cada sesión de prácticas (O). Estas serán realizadas con el programa R. Ponderación en la calificación final: 10%.
-
Aquellas pruebas que no sean realizadas por el alumnado tendrán una puntuación de 0 puntos.
-
El alumnado que no se presente a más del 50% de las pruebas (entre los apartados 1, 2 y 3) obtendrá una calificación final de “No presentado”.
Forma de evaluación
De acuerdo a la normativa de la UGR, la evaluación ordinaria de la asignatura se realizará de manera continua. El estudiantado que no pueda cumplir con este sistema de evaluación debe solicitar al profesorado responsable de la asignatura, al inicio del curso y con la debida justificación documental, la posibilidad de acogerse a la evaluación única final. Las causas contempladas para ello pueden consultarse en la citada normativa de evaluación. Tras la solicitud, el/la estudiante recibirá una notificación de aprobación o denegación de la misma.
Calificación Final:
En el caso de presentarse al 50% de las pruebas o más la calificación final se obtiene ponderando en un 70% la calificación media de las pruebas teórico-prácticas (TC), en un 20% la calificación media de las pruebas de prácticas (P) y en un 10% la calificación media de las pruebas de prácticas de ordenador (O). Aquellas pruebas que no se haya presentado tendrán una puntuación de 0 puntos.
El cálculo es Nota final F = 0,7 (media de TC) + 0,2 (media de P) + 0,1 (media de O).
Siendo "media de T" la calificación media (sobre 10 puntos) en las pruebas teórico-prácticas, "media de P" la calificación media (sobre 10 puntos) en las pruebas de prácticas y "media de O" la calificación media (sobre 10 puntos) en las pruebas de prácticas de ordenador.
En caso de no presentarse a mas 50% de las pruebas la calificación es directamente "No presentado”.
Evaluación Extraordinaria
- Examen teórico-práctico. Ponderación en la calificación final: 100%:
- (A) Cuestionario de 10 a 20 preguntas tipo test correspondientes al bloque teórico-práctico (con tres opciones de respuesta; por cada tres preguntas mal se restará una bien; las preguntas no respondidas no contrarrestarán). Se evaluará sobre 10. Ponderación 20%
- (B) Entre 2 y 4 ejercicios de problemas a desarrollar correspondientes al bloque teórico-práctico y práctico (TC y P). Se evaluará sobre 10. Ponderación 70%
- (C) Un ejercicio de interpretación de las salidas del programa R correspondientes al bloque prácticas de ordenador (O).Se evaluará sobre 10. Ponderación 10%
1.1 Cálculo de la calificación final: Nota final F = 0,20 (nota en A) + 0,70 (nota en B) + 0,1 (nota en C)
2. El alumnado que no se presente a este examen obtendrá la calificación de "No presentado"
Evaluación única final
Para acogerse a la evaluación única final, el estudiante, en las dos primeras semanas de impartición de la asignatura, o en las dos semanas siguientes a su matriculación si ésta se ha producido con posterioridad al inicio de la asignatura, lo solicitará, a través del procedimiento electrónico, al Director del Departamento, alegando y acreditando las razones que le asisten para no poder seguir el sistema de evaluación continua. No obstante lo anterior, por causas excepcionales sobrevenidas y justificadas (motivos laborales, estado de salud, discapacidad, programas de movilidad, representación o cualquier otra circunstancia análoga), podrá solicitarse la evaluación única final fuera de los citados plazos, bajo el mismo procedimiento administrativo. La evaluación única final se llevará a cabo como se describe a continuación:
- Examen teórico-práctico. Ponderación en la calificación final: 100%:
- (A) Cuestionario e 10 a 20 preguntas tipo test correspondientes al bloque teórico-práctico (con tres opciones de respuesta; por cada tres preguntas mal se restará una bien; las preguntas no respondidas no contrarrestarán). Se evaluará sobre 10. Ponderación 20%
- (B) Entre 2 y 4 ejercicios de problemas a desarrollar correspondientes al bloque teórico-práctico y práctico (TC y P). Se evaluará sobre 10. Ponderación 70%
- (C) Un ejercicio de interpretación de las salidas del programa R correspondientes al bloque prácticas de ordenador (O).Se evaluará sobre 10. Ponderación 10%
1.1 Cálculo de la calificación final: Nota final F = 0,20 (nota en A) + 0,70 (nota en B) + 0,1 (nota en C)
2. El alumnado que no se presente a este examen obtendrá la calificación de "No presentado"
Información adicional
Solicitud de evaluación por incidencias para las pruebas parciales:
Si se da el caso de que un/una estudiante esté siguiendo la evaluación continua y no pueda concurrir a cualquiera de las pruebas parciales de evaluación descritas en esta guía, es posible solicitar una evaluación por incidencias. Los casos en que se justifica la evaluación en una fecha diferente a las programadas por el profesorado de la asignatura a lo largo del curso serán los mismos que se contemplan en el art. 9 "evaluación por incidencias" establecidos en el Texto Consolidado de la Normativa de Evaluación y de Calificación de los Estudiantes de la Universidad de Granada. La incidencia se deberá dirigir al profesorado responsable de la asignatura, aportando la documentación oportuna que la acredite.
Solicitud de evaluación por incidencias para las convocatorias ordinaria y extraordinaria:
En aquellos casos en los que la evaluación por incidencias se corresponda con estudiantes que no puedan asistir a la prueba de evaluación que tenga asignada una fecha de realización por la Facultad de Ciencias, de acuerdo al calendario oficial de exámenes (estudiantes a los que se les haya concedido la Evaluación Única Final y/o quienes concurran a la convocatoria extraordinaria), deberán solicitar la "Evaluación por Incidencias" a través de instancia por sede electrónica de la UGR, destinada a la Dirección del Departamento, que será quien deberá resolver si aprueba o no esta evaluación, de acuerdo con lo establecido en el art. 9 "evaluación por incidencias", del Texto Consolidado de la Normativa de Evaluación y de Calificación de los Estudiantes de la Universidad de Granada.
Información de interés para estudiantado con discapacidad y/o Necesidades Específicas de Apoyo Educativo (NEAE): Gestión de servicios y apoyos (https://ve.ugr.es/servicios/atencion-social/estudiantes-con-discapacidad).